ND Spoofing for Fun and Profit
Distributing server farm traffic efficiently

Lutz Donnerhacke
IKS Service GmbH
The Problem

• High bandwidth servers
• Distributed clients
 • Distribute locations
 • Intermediate bandwidth limited
• Third party appliances
 • Internal communications?
 • Single default gateway
 • No technical contacts
• Design violation
 • Should buy two clusters
First Hop Redundancy

- Single active router
 - HSRP, etc.
 - Failover

- Traffic flow
 - Deterministic
 - Not optimal
 - Intermediate bandwidth required
Disturb First Hop Redundancy

- Prevent FHR communication
 - Both nodes active
 - Complicated, error prone
- Low latency = local
 - First come, first serve
 - Slow and unstable redundancy
- Do not disturb the cluster
 - May harm internal communication
- Hard to operate
 - Always a fail state
SDN for the rescue

- Inject the router twice
 - MAC into BGP
 - Least cost route
- Pro
 - Stable
 - Redundant
- Con (for us)
 - Redesign of core network
 - Expensive
Back to the blackboard

• Different gateways
 • Each server has an other router
 • HSRP still possible

• Locality depend configuration
 • Communicate with vendor
 • Change application
 • Change rollout

• Unlikely 😞
Can we fool the servers?

• Trivial idea
 • Same IP, different MAC
 • First come, first server

• Fails in practice
 • Duplicate IP detection
 • Missing ND responses
 • Core in danger
ND for the rescue

• Router
 • IPs from different networks
 • Down: Host routes to interface

• ND-Server
 • Fake ND responses
 • Rule based: who, whom, what
 • Can respond with HSRP-MACs

• Server
 • Automatically learn optimal MAC

00.22.33.44.55.66
00.22.33.44.55.77
192.0.2.10
192.0.2.11
192.168.0.2
10 -> 66
11 -> 67
Background

• xDSL networks
 • Carrier blocks
 • Customers need

• PARPD
 • Rule based ARP/ND responder

• Sources
 • https://lutz.donnerhacke.de/Blog/Proxy-ARP-daemon
 • https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=223594