DNSSEC
From a protocol bug to a security advantage

Lutz Donnerhacke

db089309: 1c1c 6311 ef09 d819 e029 65be bfb6 c9cb
A protocol from better times

- An ancient protocol
 - People were friendly and trustworthy
 - Internet was a warm and fuzzy place
- *DNS is a protocol from admins for admins*
 - Main assumption: Computers do not lie
 - Idea: A hierarchical distributed database
- Store locally, read globally
Playground to extend

• DNS **works**, so use is as a container
 • http://tools.ietf.org/wg/dnsext/
• DNS **scales**, so push a lot of data in
 • in-addr.arpa
• DNS can be **misused** as a catchword repository: www.catchword.com
• DNS may have **multiple roots**, so introduce private name spaces
Playground to manipulate

• Push all initial requests to a payment site
• Prevent requests to *bad* sites
• Offer own search engine for NXDOMAIN
• Geolocation for efficient content delivery
• Geolocation for lawful content selection
• Provide different software updates
• Prevent worm updates
trustroute +trace

- Modelling real world data as DNS records
- Transferring data into DNS primary server
- Transferring data into DNS secondaries
- Updating meta data in parent zone
- Delivering data to recursive servers
- Processing by resolver code
- Providing structures to applications
- Interpreting data by users
Securing the data flow

• Two possible design goals:
 • Detect manipulation
 • Prevent wire-tapping

• Facing typical problems
 • The compatibility hydra
 • Partial roll-out
 • Satellite networks

• Still designed by admins: NSEC(3)
DNS SECurity

- Trust the primary name server data
 - Signed by the zone-c
- A framework to verify integrity
 - Signature chains up to a trust anchor
- In band key management
 - DS records in parent zone (but glue!)
- Supports caching as well as offloading
- Provides peer authentication
Trust anchor management

• The root **is** signed
• In band key roll-overs: RFC 5011
• Fill the gaps (parent zone not signed)
 • Manual trust anchors: Edit files on disk
 • Trust Anchor Repositories: Look aside zones
 DS do.main => DLV do.main.dlv.pro.vi.der
• Question: Precedence of sources?
The last mile

- In an ideal world, apps use a new API
 - Error messages might become helpful
 - Validation errors are SERVFAIL
- Resolver offloading
 - Provide validated data with AD
 - Allow validator chaining with CD
 - Question: Provide bogus data at all?
- Attacks on the last mile even for LEAs
Finally gain benefits

- **DNSSEC adds trust to DNS**
- Use DNS as a hierarchical distributed DB
 - Manage your SSHFPs centrally
 - Manage your CERTs distributed
 - Manage your OpenPGP keys distributed
- Do not deliver poisoned data to clients
 - Validate late, validate centrally
Further Consequences

• Current practice for Intranets
 • Build a separate network using site specific names and numbers
 • Provide application layer gateways, NAT, Split-DNS, and VPN for non-local access
 • Hide internal structure
 • Statically map necessary services (Firewall)
 • Provide local “root” services (Active Directory)
The IPv6 impact

- IPv6 provides **public, globally routable IPs**
 - Clients do IPv6 automatically (even tunnel)
- IPv6 provides **end-to-end communication**
- IPv6 is **not designed to be translated**
- Future protocols rely on **direct channels**
 - Web 2.0: Numerous bits from different servers
 - Client to client communication
 - Shortest routing for “quality enhancements”
The DNSSEC impact

• Validation chain from a **well-known key**
 • Clients may have the key hardcoded
• **Only one root** possible
 • *No local names*
• Prevents rdata and NXDOMAIN rewriting
 • **Consistent** external and internal view
• Enterprise DNS rely on DNSSEC from everywhere (*DirectAccess, SSH, _tcp …*)
The horrible mobile client

• Public mobile networks are everywhere
• Mobile clients
 • Important status symbols
 • Roam in and out quickly
 • Always on: Cloud services
 • Can’t be configured
• IPv6
 • Exposes internal DNS servers
 • Create mobile peer-to-peer networks
Future (Intra)Nets
Modern intranets

• **Accept** consistency requirement
 • Local WLAN *and* mobile networks
 • REST web applications instead of VPN
• Secure the services, not the networks
• Secure the data, not the servers (cloud)
• Authenticate the user, not the computer
• Use DNS as trustworthy resource
• Always use direct communication
Conclusion

• IPv6 and DNSSEC dramatically change the design of modern networks
 • Information hiding policies do not work
 • Centralized policy enforcement unusable
• Concentrate on benefits
 • Build stable, globally routable networks
 • Enforce data security at the data level
 • Trust the people, not the devices
Did you sign your zones?

Why not?