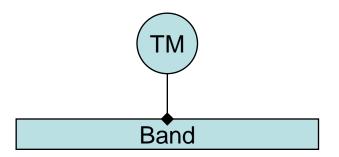
Theoretische Informatik

Berechenbarkeit

- Endlicher Automat mit unendlichem Speicher
- Ein Modell eines realen Computers
- Was ein Computer berechnen kann, kann auch eine TM berechnen.
- Was die TM nicht berechnen kann, kann auch ein Computer nicht berechnen.

- Zusatzfunktionen gegenüber einem DFA:
 - Lesen und Schreiben auf einem Band
 - Band nach links und rechts bewegen
 - Band ist unendlich lang
 - Endzustände (für OK oder Fehler) beenden, auch wenn noch Eingaben vorliegen



Neue Übergangsfunktion:

 $\delta: Q \times T \rightarrow Q \times T \times [L,R]$

Q: Zustandsmenge

T: Alphabet auf dem Band

[L,R]: Richtung der Bandbewegung

 Die Turingmaschine liest und schreibt bei jedem Schritt auf dem Band und bewegt es ständig hin und her.

- Beispiel einer Berechnung:
 - Prüfe die Eingabe, ob die Form a*b*c* stimmt
 - 2. Fahre zum Anfang des Bandes zurück
 - 3. Ersetze erstes a durch # und suche erstes b
 - 4. Ersetze jedes c in bⁿ#*cⁿ durch #
 - 5. Gehe zurück zu 2, bis kein a mehr da ist
 - 6. Prüfe ob kein c mehr da ist, dann OK
- Was tut das Programm?

Chomsky Hierarchie

- Typ 3 reguläre Sprachen
 - Endlicher Automat
- Typ 2 kontextfreie Sprachen
 - Stackautomat
- Typ 1 kontextsensitive Sprachen
 - Turingmaschine mit endlichem Band
- Typ 0 unbeschränkte Sprachen
 - Turingmaschine mit unendlichem Band

Registermaschine

- DFA mit Zusatzeigenschaften:
 - Unendliche Anzahl von Registern R_i (i ≥ 0)
 - Inkrementieren eines Registers
 - Dekrementieren eines Registers bis 0
 - Test eines Registers auf 0
- Registermaschinen modellieren reale Rechner etwas natürlicher

Registermaschinen

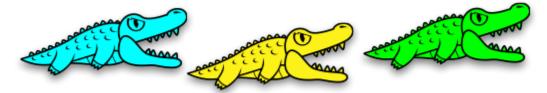
- Register- und Turingmaschinen sind äquivalent
- Beweis durch Simulation:
 - Für alle Operationen einer Turing Maschine existiert ein Registermaschinenprogramm
 - Für alle Operationen einer Registermaschine existiert ein Turingmaschinenprogramm
 - Idee: Zahl im Register = Anzahl von bestimmten Symbolen auf dem Band

λ - Kalkül

- Modellierung realer Computer durch Chomsky (parallel zu Turing)
 - $-\lambda x \rightarrow x + 2 * x$ (x ist gebundene Variable)
 - $-\alpha$ − Konvertierung: Variablenumbennung $\lambda x \rightarrow x + 2 * x <=> \lambda y \rightarrow y + 2 * y$
 - β Reduktion: Variablenersetzung (λ x → x + 2 * x) (4 - 1) <=> (4 - 1) + 2 * (4 - 1)
 - η Reduktion: Variablenentfernung
 λ x → f x <=> f
- http://worrydream.com/AlligatorEggs/

λ – Kalkül: Spielfiguren

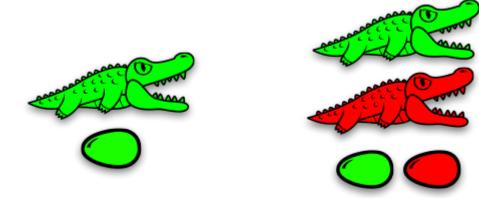
Hungrige Krokodile fressen alles



Eier müssen beschützt werden

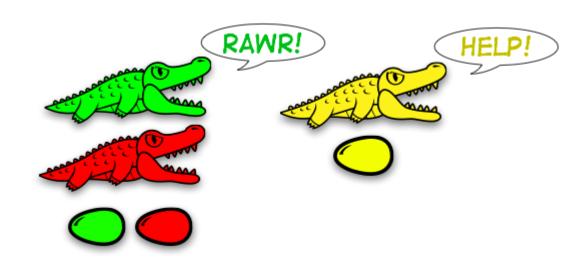
λ – Kalkül: Familien

- Krokodile schützen die unter ihnen stehenden Familienmitglieder
- Jedes Ei braucht ein Krokodil



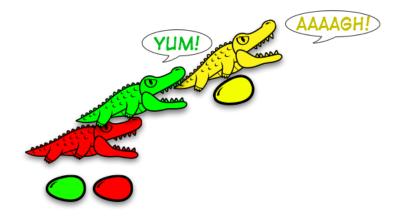
λ – Kalkül: β – Reduktion

- Hungrige Krokodile essen, was vor ihrem Maul steht.
- Das oberste Krokodil darf zuerst essen

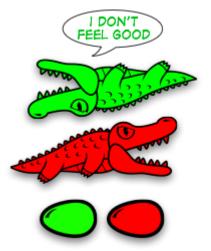


λ – Kalkül: β – Reduktion

Es werden ganze
 Familien gefressen

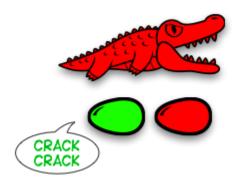


Wer zuviel frißt, stirbt

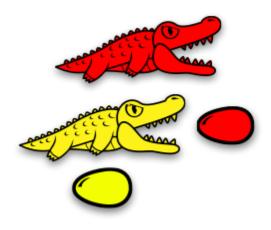


λ – Kalkül: β – Reduktion

 Ungeschützte Eier schlüpfen

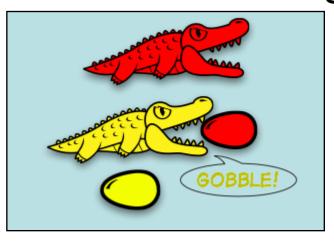


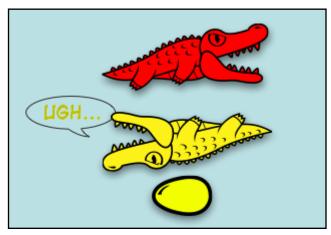
 Es schlüpft genau das, was gefressen wurde

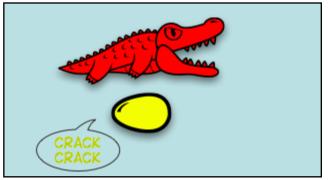


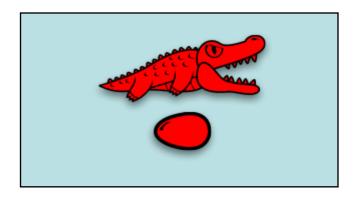
λ – Kalkül: β – Reduktion

Und es wird weiter gefressen



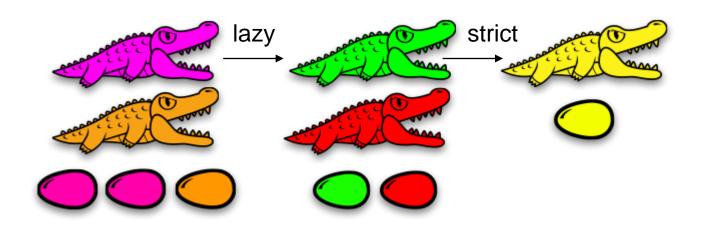




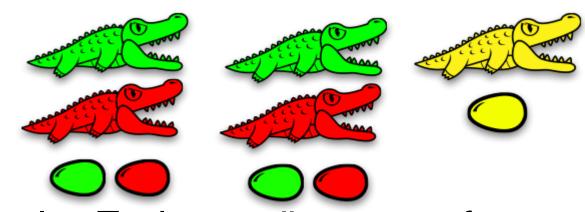


λ – Kalkül: β – Reduktion

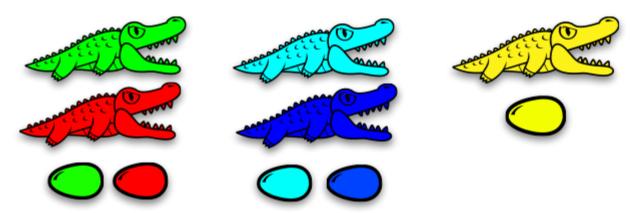
- Längere Ausdrücke sind verschieden reduzierbar
- Lazy (verzögert) oder Strict (mit Werten)



λ – Kalkül: α – Konvertierung



• Doppelte Farben müssen entfernt werden.



λ – Kalkül

- Das λ Kalkül ist Basis aller modernen Programmiersprachen
- Turing Maschinen und λ Kalkül sind äquivalent
- Beide Verfahren definieren Algorithmen

Berechenbarkeit

- Was eine TM akzeptiert oder ablehnt, ist berechenbar (Church-Turing-These)
- Berechenbare Probleme <=> Algorithmus
- Aber: Endlosschleifen sind möglich
- Halteproblem: Kann man allein vom Sourcecode einer TM entscheiden, ob diese immer anhält?

Theoretische Informatik

Komplexitätstheorie

Komplexität

- Ermittlung des Zeitverhaltens und des Platzbedarfes in Abhängigkeit von der Eingabe
- Drei Fälle:
 - Bester Fall: Trivialität
 - Schlechtester Fall: Schwerste Berechnung
 - Durchschnittlicher Fall: Typisches Verhalten
- Nur asympthotische Abschätzung

Komplexität

- f=O(g) (Groß-O)
 - Obere Abschätzung
 - f(x) bleibt bei großen Werten unter g(x)
 - Meist sieht f wie g aus
 - Konstante Faktoren (Skalierung) entfällt
- O(1) Konstantes Verhalten
- O(n) Lineares Verhalten
- O(log n) Logarithmisches Verhalten

Komplexitätsklassen

- P Alle Algorithmen die O(n^k) sind
 - Schnelles Finden der Lösung
- NP Alle Probleme deren Lösungsprüfalgorithmus in P liegt
 - Schnelles Überprüfung der Lösung
- Offenes Problem der Informatik:
 Ist P und NP gleich?

Komplexitätsklassen

- PSPACE Probleme, die O(n^k) Platz mit deterministischen Algorithmen brauchen
- NPSPACE Probleme, die O(n^k) Platz mit nichtdeterministischen Algorithmen brauchen
- **EXPTIME** Probleme, die O(2ⁿ) Zeit brauchen
- P ≤ NP ≤ PSPACE = NPSPACE ≤ EXPTIME

