Securing BGP using DNSSEC

Lutz Donnerhacke

db089309: 1c1c 6311 ef09 d819 e029 65be bfb6 c9cb
The Problem

• BGP announcements can be „fat fingered“
• Prominent examples: AS7007, YouTube
• Most common usage: Spam injection
• Proposed solutions like s-BGP, so-BGP, ps-BGP, SIDR are too detailed
• DNS(SEC) mapping by Tony Li and Randy Bush was a theoretical proposal
Design principles

• Don´t solve everything, only „config errors“
• KISS principle: Minimal impact to routers
• Deployment: Use existing software, do not modify protocols on the wire
• Goal: Verify a BGP prefix and path after the injection point (missing filters)
• Allow cold start, allow private exceptions
Verification process

• BGP Updates contain prefixes with paths
 – 2003::/19 "1273 3320 i" "5400 3356 3320 i"

• Check origin (prefix to AS check)
 – Is 3320 allowed to announce by 2003::/19 ?

• Check path (peering/upsteam/...)
 – Does 3320 export "3320" to peer 3356 ?
 – Does 3356 import "3320" from peer 3320 ?
 – Does 3356 export "3356,3320" to peer 3356 ?
 – Does 5400 import "3356,3320" from 3356 ?
Testbed

- Verify spec by real world data
 - Full IANA allocates
 - Almost all RIPE allocates
 - Almost all IRDB (RIPE) assignments
 - Spec changes are result of real problems

- Simulation of RIPE region
 - Running 260 DNS servers (IPv6, single host)
 - ~ 15000 AS, 1700 IPv6, 70000 IPv4 zones, 1GB compressed zone data
Using the Testbed

- **Stub/slave zone**
 - zone "bgp.arpa" {
 type stub;
 masters { 2001:4bd8::3:0; };
 }
 - DS 48622 5 1 5EC22EB16EB4E6E94889BF249EE82920608D3558

- **Signed root**
 - http[s]://www.iks-jena.de/leistungen/keys.txt

- **Real tests should use a remote resolver w/ signed root and the AD bit from DNSSEC**
Mapping into bgp.arpa.

- AS# in asdot+ format
 - 15725 > 0.15725 > 5.2.7.5.1.0.as.bgp.arpa.
 - 3.10 > 3.00010 > 0.1.0.0.0.3.as.bgp.arpa.

- Prefix mapping like in-addr/ip6.arpa
 - 2003::/20 > 0/20.3.0.0.2.ipv6.bgp.arpa.

- Different namespace to follow allocations and assignments as closely as possible
Mapping into bgp.arpa.

• Route origin
 – 192/20.17.217.ipv4.bgp.arpa. ASSET 15725
 – $ORIGIN 0/19.3.0.0.2.ipv6.bgp.arpa.
 0/19 ASSET 3320
 0/20 ASSET 3320

• Peering information
 – $ORIGIN unicast.ipv4.3.0.0.0.0.3.as.bgp.arpa.
 5539.import ASSET ANY
 5539.export ASSET 3.3
 6695.import ASSET as-decix.5.9.6.6.0.0.as.bgp.arpa.
 6695.export ASSET 3.3
ASSET Ressouce Record

- Deaggregated AS-Sets are huge
- References allow „auto-update“
- Aggregated AS-Sets are still large
- Fallback to TXT (exploiting NSEC)
- Transition mode: Allow, warn, and reject
- Everybody can create the origin and the peering information DNS right now
DNSSEC as PKI

- No crypto processing in routing devices
 - External validating resolver => AD bit
- Delegate maintainance to special Ops
- Private address space: Local zones
- Private peerings: Local secondaries
- No special software necessary
Bootstrap and Self-DDoS

- **Self DDoS**
 - „All“ routers ask when route flaps
 - Utilize peers cache by asking routers
- **Boot1: Waiting for DNS before verifying**
 - Accept routes and postpone verification
 - Redistribute only verified routes
- **Boot2: Chaining peers**
 - UUCP like DNS query routing
Securing BGP using DNSSEC

Questions?